Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 190: 106579, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689120

RESUMO

Cancer drug resistance is an ever-changing problem that most patients need to face in their later stages of treatment, especially the multidrug resistant (MDR) type. The drug efflux transporters, including P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP), play the crucial roles in this sophisticated battle. In recent decades, researchers try to find potential inhibitors to impede the drug efflux function of above transporters. d-α-Tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) is a prevalently used excipient in the formulation design. In the present study, the modulatory effects and mechanisms of vitamin E TPGS on the efflux transporters were investigated. And the cancer MDR reversing ability of vitamin E TPGS was evaluated as well. Stable-cloned transporter over-expressed cell lines were used for mechanisms study, while several types of MDR cancer cell lines were adopted as reversing evaluation models. The results exhibited that vitamin E TPGS significantly inhibited the efflux function of P-gp, MRP1, and BCRP under non-cytotoxic concentrations, but not influencing the protein expression levels. Through efflux assay and molecular docking, vitamin E TPGS was found to be an uncompetitive, non-competitive, and competitive inhibitor on chemotherapeutic drug doxorubicin efflux in P-gp, MRP1, and BCRP over-expressing cell lines, respectively. Furthermore, the basal ATPase activity of three transporters were significantly inhibited by vitamin E TPGS at 10 µM. And the cell membrane fluidity of P-gp over-expressing cell line was enhanced by 22.58% with 5 µM vitamin E TPGS treatment, compared to the parental Flp-In™-293 cell line (without P-gp). The resistance reversing ability of vitamin E TPGS was prominent in MCF-7/DOX MDR breast cancer cell line, which over-expressed P-gp, MRP1, and BCRP. These significant results suggested that vitamin E TPGS is a promising modulator on transporters mediated cancer MDR. Vitamin E TPGS is not an inert excipient, but possesses MDR-reversing pharmacological effects, and deserves a re-purposing application on the future combinatorial regimen design for MDR cancer treatment.

2.
Mov Disord ; 38(12): 2217-2229, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752895

RESUMO

BACKGROUND: Rare mutations in NADH:ubiquinone oxidoreductase complex assembly factor 5 (NDUFAF5) are linked to Leigh syndrome. OBJECTIVE: We aimed to describe clinical characteristics and functional findings in a patient cohort with NDUFAF5 mutations. METHODS: Patients with biallelic NDUFAF5 mutations were recruited from multi-centers in Taiwan. Clinical, laboratory, radiological, and follow-up features were recorded and mitochondrial assays were performed in patients' skin fibroblasts. RESULTS: Nine patients from seven unrelated pedigrees were enrolled, eight homozygous for c.836 T > G (p.Met279Arg) in NDUFAF5 and one compound heterozygous for p.Met279Arg. Onset age had a bimodal distribution. The early-onset group (age <3 years) presented with psychomotor delay, seizure, respiratory failure, and hyponatremia. The late-onset group (age ≥5 years) presented with normal development, but slowly progressive dystonia. Combing 25 previously described patients, the p.Met279Arg variant was exclusively identified in Chinese ancestry. Compared with other groups, patients with late-onset homozygous p.Met279Arg were older at onset (P = 0.008), had less developmental delay (P = 0.01), less hyponatremia (P = 0.01), and better prognosis with preserved ambulatory function into early adulthood (P = 0.01). Bilateral basal ganglia necrosis was a common radiological feature, but brainstem and spinal cord involvement was more common with early-onset patients (P = 0.02). A modifier gene analysis showed higher concomitant mutation burden in early-versus late-onset p.Met279Arg homozygous cases (P = 0.04), consistent with more impaired mitochondrial function in fibroblasts from an early-onset case than a late-onset patient. CONCLUSIONS: The p.Met279Arg variant is a common mutation in our population with phenotypic heterogeneity and divergent prognosis based on age at onset. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos , Hiponatremia , Doença de Leigh , Transtornos dos Movimentos , Pré-Escolar , Humanos , Distúrbios Distônicos/complicações , Hiponatremia/complicações , Doença de Leigh/genética , Doença de Leigh/complicações , Metiltransferases/genética , Proteínas Mitocondriais/genética , Transtornos dos Movimentos/complicações , Mutação/genética , Criança , Adulto Jovem
3.
J Cell Biol ; 222(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37584589

RESUMO

Mitochondria are dynamic organelles regulated by fission and fusion processes. The fusion of membranes requires elaborative coordination of proteins and lipids and is particularly crucial for the function and quality control of mitochondria. Phosphatidic acid (PA) on the mitochondrial outer membrane generated by PLD6 facilitates the fusion of mitochondria. However, how PA promotes mitochondrial fusion remains unclear. Here, we show that a mitochondrial outer membrane protein, NME3, is required for PLD6-induced mitochondrial tethering or clustering. NME3 is enriched at the contact interface of two closely positioned mitochondria depending on PLD6, and NME3 binds directly to PA-exposed lipid packing defects via its N-terminal amphipathic helix. The PA binding function and hexamerization confer NME3 mitochondrial tethering activity. Importantly, nutrient starvation enhances the enrichment efficiency of NME3 at the mitochondrial contact interface, and the tethering ability of NME3 contributes to fusion efficiency. Together, our findings demonstrate NME3 as a tethering protein promoting selective fusion between PLD6-remodeled mitochondria for quality control.


Assuntos
Mitocôndrias , Nucleosídeo NM23 Difosfato Quinases , Ácidos Fosfatídicos , Fosfolipase D , Humanos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo
4.
Front Pharmacol ; 13: 879748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662690

RESUMO

Breast cancer is the most prevalent cancer and the second leading cause of cancer death in women. Cisplatin is a commonly used chemotherapeutic drug for breast cancer treatment. Owing to serious side effects, the combination of cisplatin with other drugs is an effective strategy to simultaneously reduce side effects and increase the anticancer efficacy. GLUT1 is an emerging target for cancer treatment since cancer cells usually consume more glucose, a phenomenon called the Warburg effect. In this study, we found that the combination of cisplatin and a novel GLUT1 inhibitor #43 identified from our previous high-throughput screening exerted a synergistic anticancer effect in MCF-7 and MDA-MB-231 breast cancer cells. Mechanism studies in MCF-7 cells revealed that combination of cisplatin and #43 significantly induced apoptosis, intracellular reactive oxygen species, and loss of mitochondrial membrane potential. Furthermore, #43 enhanced the DNA damaging effect of cisplatin. Akt/mTOR downstream signaling and the ERK signaling pathway usually involved in cell growth and survival were inhibited by the combination treatment. On the other hand, phosphorylation of p38 and JNK, which may be associated with apoptosis, was induced by the combination treatment. Altogether, our data indicate that oxidative stress, DNA damage, the Akt/mTOR and MAPK signaling pathways, and apoptosis may be involved in the synergism of cisplatin and #43 in breast cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...